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This paper discusses the mathematical properties of similar solutions of the 
boundary-layer equations in a compressible model fluid, under assumptions f i s t  
introduced by Stewartson and by Li & Nagamatsu. Assuming a favourable 
pressure gradient and that backflow is not present, our results include (among 
other things) a rigorous proof that velocity overshoot occurs in the boundary 
layer if the wall is heated, and that this is true whether or not suction, blowing 
or slipping occurs at  the wall; while, conversely, velocity overshoot does not 
occur when the wall is cooled and the amount of slipping at  the wall is suitably 
restricted. 

1. Introduction 
We shall be concerned in this note with the boundary layer of a compressible 

fluid adjacent to a fixed wall. Under appropriate conditions on the physical 
properties of the fluid one can look for similar solutions to this problem. As was 
first shown by Stewartson (1949) and by Li & Nagamatsu (1955) this leads to the 
linked pair of non-linear differential equations 

f”’ +ff” + B(h --f’2) = :o, (1) 

h” +fh’ = 0, ( 2 )  

with the boundary conditions 

f ( 0 )  =f’(O) = 0, h(0) = a; f’(.o) = h ( a )  = 1. (3) 

Heref’ and h are effectively the tangential velocity and the total energy function 
in the boundary layer, /3 is a constant dependent on the particular stream con- 
ditions, and a measures the ratio of the temperature at  the wall to the stagnation 
temperature in the mainstream. The first two conditions of (3) express the fact 
that the fluid adheres to the wall without slipping. (It is also possible to consider 
walls which are permeable to the h i d  and even to allow a certain amount of 
slipping. The changes in the argument which are required to handle these more 
general cases are discussed briefly at  the end of the paper.) 

A derivation of the above equations and a discussion of the stream conditions 
under which they are valid can be found in several standard works, e.g. Schlicht- 
ing (1960), Rosenhead (1963) and Stewartson (1964). We remark here only that 
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the constant p is non-negative when the pressure gradient in the mainstream 
is favourable. 

If p = 0, equation (1) becomes Blasius’s equation, the existence, uniqueness, 
and behaviour of the solution being well known. Solutions of ( l ) ,  (2), (3) have 
been calculated numerically for various values of the parameters a and p by 
Li & Nagamatsu (1955) and by Cohen & Reshotko (1956). In  addition, Ho 8: 
Wilson (1967) have recently proved the existence of solutions when p > 0 and 
0 < a < 1, that is, when the wall is cooled, while in work to appear shortly the 
present authors have extended this result to the case when the wall is heated 
(a  > 1) and slipping, suction and blowing are present. 

For the case of a heated wall with p > 0 numerical work and physical reasoning 
indicate the existence of velocity overshoot in the boundary layer. (By velocity 
overshoot we mean the occurence off‘  > 1 for some range of values of the 
independent variable 7.) An asymptotic analysis of this phenomenon was given 
by Cohen & Reshotko (1956). While this analysis is valuable, and suggestive 
of the general behaviour to be expected of solutions, it nevertheless was based 
on dropping certain terms from the equations and accordingly is not entirely 
convincing. This being the case, one of the main purposes of this note is to show 
that such an overshoot must in fact occur as a direct and mathematically exact 
consequence of the differential equations and the fact that a > 1. A t  the same 
time we shall consider the general qualitative behaviour of solutions when p > 0, 
both when the wall is heated and when it is cooled. It will be assumed throughout 
that the solutions under discussion do not exhibit backflow, that is, we assume 
that f ’  2 0 for all solutions under consideration. 

When 0 < a < 1 we shall show, specifically, that the functions h and f ’  are 
monotonically increasing and concave, withf2 < h . It follows, in consequence, 
that similar solutions do not exhibit velocity overshoot when the wall is cooled. 
(When a = 1, see the remark a t  the end of $3.) 

When a > 1 we show that h is monotonically decreasing and convex. More- 
over, f ’  first increases to a maximum value greater than l and then decreases 
monotonically to its limit value 1. In  additionf’2 < h everywhere, and the graph 
off’ is concave in its rising portion, has exactly one inflexion when the parameters 
p and a satisfy the relation 21. 2 p <  __ ,/a-1’ 

and otherwise has at  most a finite (odd) number of inflexions. 
The conditionf’2 < h, which occurs bothfor cooled and for heatedwalls, has the 

physical interpretation that the local Mach number in the boundary layer is less 
than the Mach number in the mainstream. To see this, we recall the relationship 
off’ and h to the physical variables in the flow, namely 

u = Uf‘,  4u2-+cpT = Hh, 

where u is the tangential velocity and T the temperature, cp the specific heat at  
constant pressure, and H and U mainstream scaling parameters. A simple 
calculation then shows that f ‘2 < h is equivalent to 

u ~ / T  < U2/Tm, 



Similar solutions in a compressible boundary layer 339 

which establishes the required interpretation (since in the fluid the squared speed 
of sound is proportional to temperature). 

We emphasize finally that what is being proved here is that i f  solutions exist 
which do not exhibit backjlow then they must behave in the manner described. 
The existence of solutions is another matter, dealt with in the papers noted 
earlier, while the uniqueness of solutions remains an open question. 

2. Existence of velocity overshoot 

(2)  there follows 
We start by considering the existence of velocity overshoot when a > 1. From 

h’(7) = - Cexp (-j;f(w) 9 (4) 

where the real coefficient C must be positive since h(0)  = a > 1 and h ( a )  = 1. 
Since f ’+ 1 as 7 -+ co we have f (7) - 7, whence by L’H6pital’s rule 

Now set 

and write (1) in the form 

F‘ = -P(h-f’z)  exp 

If we suppose, contrary to what has to be proved, that overshoot does not take 
place, then f ’  < 1 everywhere. Since f ’  2 0 by assumption, we find f ’2 < 1 and so, 
by ( 5 )  and (61, 

for 7 sufficiently large. Integrating this yields F -+ - co as 7 + 00, whence f ”  is 
ultimately negative. This in turn implies (using the condition f’+ 1 as 7 -+ 00) 

that f ’  > 1 for all sufficiently large q, and we have the required contradiction. 

3. The inequality f ’2 < h 

We show now that f t 2  < h when p > 0 ,  irrespective of whether the wall is 
heated or cooled. Letting G = h- f ’ 2 ,  an easy calculation from (1) and ( 2 )  gives 

(7 )  G“ + fG’ - 2Bf ’G = - 2( f ” )2 .  

Suppose for contradiction that G < 0 at some point. Since G = a > 0 at 7 = 0 
and G = 0 at 7 = 00, there must then be some point yo at which G takes a negative 
or zero minimum. At this point 

G < 0, G‘= 0, G 2 0, 

contradicting (7) unless f”(yo) = 0. But then G‘ = h’ - 2f’f” = h’ at v0, contra- 
dicting the fact that G‘ = 0 at qo. 

22-2 
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4. The cooled wall 
Consider now the behaviour off‘  and h when 0 < a < 1. Relation (4) con- 

tinues to hold, though now the coefficient C must be negative since h(0) < 1. 
Therefore h‘ > 0, and in turn h” < 0 by (2). Thus the graph of h is monotonically 
increasing and concave. 

By (6) the function P is monotonically decreasing. If its limit as 7 tends to 
infinity is negative, then f ”  must eventually be negative. But (using the con- 
dition f’+ 1 as 7 -+a) this contradicts the fact that f ’2 < h < 1. Hence the limit 
value of P is non-negative and P and f ” are positive functions. Finally by (1) 

f” = -f f”-P(h-f’Z) < 0. 

Thus the graph off’ is also monotonically increasing and concave. 

Remark 

When a = 1 we are easily led as above to h‘ = 0 and h = 1. Equation (1) then 
reduces to the Falkner-Skan equation; it follows finally by the argument in the 
preceding paragraph that f’ is monotonically increasing and concave. 

5. The heated wall 
We turn lastly to the behaviour off’ and h when a > 1. From (4) and ( 2 )  it  is 

clear that the graph of h is monotonically decreasing and convex. 
Also by (6) the function P is monotonically decreasing. Let its limit value be 

denoted by 1 (possibly - a). The case I 2 0 is impossible, since then we always 
have f “  2 0 and f’ < 1, which has already been excluded. Hence 1 < 0 and 
f ”  is first positive and then negative (the case where f” takes only non-positive 
values obviously cannot occur). Consequently f must first increase to a maximum 
value greater than 1 and then decrease to its limit value 1 at infinity. 

Since f ”’ = - ff” - P(h - f f 2 )  it follows that f ’I’ < 0 so long as the graph off’ is 
rising. 

It remains to consider the inflexions in the graph. We show first that these are 
finite in number and that eventually f ’I’ > 0. Indeed, once f ’  becomes greater 
than 1 we have 

For sufficiently large values of 7, however, 

f” 2 -f f”-P(h- 1). 

and 

by the results of $2. Thus f” is ultimately positive. If there were an infinite 
number of inflexions they would have a finite limit point. But then (since f is an 
analytic function) it would follow that f I” = 0, which is impossible. 

Before proving the final result, we show that 

2F > - C .  (8) 
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To begin with, by the definition of F and G and by (4) 

G’ = h’-2yf” = -(C+2ff’F)exp 
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If (8) were not true, then ultimately G’ would be positive. Since G = 0 at 7 = 00 

this would imply that G is ultimately negative, a situation which has already 
been excluded. 

With (8) established, we now observe that 

Let y1 be an inflexion off‘. By (4) and the definition of P, we have a t  y1 

4a 
2p We assert that if 

tlienf” > 0 at yl. Consider separately the two cases 

0 < 2 p < 1 ,  1<2p<-- -  Ja 4.- 1’  

For the first one, note that f” = -pGlf < 0 a t  yl according to (1). Hence 
P < 0 at yl and the assertion follows at once from (9). In the second case, using 
(9), (8) and the fact that f ’  < , / h  < Ja, we find 

Thus when (10) hoIds, f” can only increase as we pass an inflexion point. 
Consequently there can be no more than one inflexion in the graph off ’ under this 
condition. On the other hand, there must be at least one such point in view of the 
already established behaviour off ’. This completes the proof of the assertions 
made in the introduction. 

6. Generalizations 
In  the preceding sections we restricted ourselves specifically to the situation 

when f (0) =f’(0) = 0, but the analysis easily extends to the more general case 
f(0) = a,,f’(0) = a2, where 01, is any real constant and a2 is a non-negative con- 
stant satisfying a2 < da. (The last condition expresses the fact that the Mach 
number at the wall should not exceed the Mach number in the mainstream; 
cf. the remark at the close of the introduction.) 

Nothing in $ 2  is altered by the above changes, and it therefore follows that 
velocity overshoot continues to hold when a > 1. Furthermore, with the help 
of the condition a2 < ,/a it is not hard t o  see that the argument of $3  continues 
to hold; we can therefore conclude that f r 2  < h for all positive values of 7. 

When a1 > 0, that is, if fluid is sucked from the boundary layer into the wall, 
nothing needs to be changed in 434 and 5. The qualitative behaviour of the graphs 
ofp’ and h therefore remains unaltered for this case. 
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On the other hand, if ctl < 0, that is, if fluid is blown through the wall into the 
boundary layer, then some significant changes result in the graphs off‘ and h. In  
particular, when a1 < 0 the function f will first be negative and then positive, 
assuming as always that the motion exhibits no backflow. Then, since h’ is of one 
sign, it is apparent from (2) that the graph of h will have exactly one inflexion 
for a 4 1, being ultimately concave when a < 1, and ultimately convex when 
a > 1. Also, following the arguments of $ 5  4 and 5, it is clear that f ’  will be mono- 
tonically increasing when a < 1, while when a > 1 it will first increase to a maxi- 
mum value greater than 1 and then decrease afterwards. 

The inflexions off’ are slightly harder to discuss in the present case. We first 
observe that according to the argument of $ 5  they must be finite in number 
whatever the value of a, and that f ’  will be ultimately concave when a < 1 and 
ultimately convex when a > 1. 

When a 6 1 and 0 < 2p < 1 one can show as, in the final part of $5, that f has 
at most one inflexion. Similarly, when a > 1 and 0 < 2p < 1, the graph off has 
exactly one inflexion on its falling portion (though it may have other inflexions on 
its rising part), and when 1 < 2p 6 &/( da - 1) it has exactly one inflexion on its 
entire course. There is no need to elaborate the details of the argument. 

This work was partially supported by the United States Air Force Office of 
Scientific Research under Grant No. AF-AFOSR-1301-67. 
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